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Notations

operators linear operators

spaces Hilbert spaces

A∗ adjoint of A

A† Moore-Penrose inverse of A

R(A) range of A

N (A) nullspace of A

B(H) all bounded operators from H to itself

C(H) all closed densely defined operators from H to itself
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Introduction

In 1950, Hans Schwerdtfeger1 defined a new class of matrices

called EP matrices.

Definition 1.

A square matrix A of order n with elements from the complex

field C is called an EP matrix if

n∑
i=1

αiA(i) = 0 if and only if
n∑

i=1

αiA
(i) = 0

where A(i) is the ith row of A and A(i) is the ith column of A.

1Hans Schwerdtfeger, Introduction to Linear Algebra and the Theory of

Matrices, P. Noordhoff, Groningen, 1950.
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Literature

Pearl (1966) : A is EP iff AA† = A†A.

Campbell and Meyer (1975) : Let A ∈ B(H) have a closed range.

Then A is EP iff AA† = A†A.

Itoh (2005) : A is hypo-EP if A†A− AA† ≥ 0.

Meenakshi, Baksalary (EP matrices) ;

Djordjevic (EP operators) ;

Patel and Shekhawat ; Johnson and Vinoth (hypo-EP operators).
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Bounded Vs Unbounded

An operator on a Hilbert space H is a bounded operator if and

only if it is continuous. It follows that unbounded operators are

discontinuous (everywhere).

Definition 2.

Let A be an operator from a Hilbert space H with domain D(A)

to a Hilbert space K. If the graph of A defined by

G(A) = {(x ,Ax) : x ∈ D(A)}

is closed in H×K, then A is called a closed operator.

We consider densely defined closed operators from H to itself.

D(A) ∩N (A)⊥, the carrier of A and it is denoted by C (A). We

note that, for any A ∈ C(H), the closure of C (A) is N (A)⊥.
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Closed Operators

Theorem 3 (Ben-Israel, 2003).

Let A ∈ C(H). Then the following are true.

1. N (A) = R(A∗)⊥, N (A∗A) = N (A).

2. N (A∗) = R(A)⊥, N (AA∗) = N (A∗).

3. R(A) = N (A∗)⊥, R(A) = R(AA∗).

4. R(A∗) = N (A)⊥, R(A∗) = R(A∗A).
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Moore-Penrose Inverse

The Moore-Penrose inverse A† for a closed densely defined

operator A can be defined with D(A†) := R(A)⊕R(A)⊥ and

taking values in C (A) by associating each y ∈ D(A†) to the unique

A†y such that AA†y = Qy , where Q is the orthogonal projection

of H onto R(A). It can be seen that N (A†) = R(A)⊥ and

A†Ax = Px for x ∈ D(A),

where P is the orthogonal projection of H onto C (A). Again, A† is

closed and densely defined operator2.

2M. Thamban Nair, Linear Operator Equations: Approximations and

Regularization, World Scientific, First Edition, 2009.
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Closed EP Operators

Definition 4.

Let A be a densely defined closed operator on a Hilbert space H.

The operator A is said to be an EP operator if A has a closed

range and R(A) = R(A∗).

Example 5.

Define A on `2 by A(x1, x2, x3, . . .) = (x1, 2x2, 3x3, . . .) with

domain D(A) = {(x1, x2, x3, . . .) ∈ `2 :
∑∞

n=1 |nxn|2 <∞}. Then

A ∈ C(H) and it is an EP operator.

Example 6.

Define A on `2 by A(x1, x2, x3, . . .) =
(
x1, 2x2,

x3
3 , 4x4,

x5
5 , . . .

)
with domain

D(A) = {(x1, x2, x3, . . .) ∈ `2 : (x1, 2x2,
x3
3 , 4x4,

x5
5 , . . .) ∈ `2}.

Then A is not an EP operator.
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Closed EP Operators

Theorem 7.

Let A ∈ C(H) with a closed range. Then the following are

equivalent:

1. A is EP ;

2. AA† = A†A on D(A) ;

3. N (A) = N (A†) ;

4. N (A) = N (A∗) ;

5. N (A)⊥ = R(A) ;

6. C (A) = R(A) ;

7. H = R(A)⊕N (A).
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Closed Hypo-EP Operators

Remark 8.

It is proved that that AA† = A†A on D(A) if and only if

N (A) = N (A∗). If we drop the assumption that R(A) is closed,

we get that AA† ⊆ A†A if and only if N (A) = N (A∗) and

D(A†) ⊆ D(A).

Similarly, we can prove that A†A ⊆ AA† if and only if

N (A) = N (A∗) and D(A) ⊆ D(A†).

P. Sam Johnson Closed EP and Hypo-EP Operators on Hilbert Spaces 10/14



Closed Hypo-EP Operators

Definition 9.

Let A be a densely defined closed operator on a Hilbert space H.

The operator A is said to be a hypo-EP operator if A has a

closed range and R(A) ⊆ R(A∗).

Example 10.

Define A on `2 by

A(x1, x2, x3, . . .) = (0, x1, 2x2, 3x3, . . .)

with D(A) =
{

(x1, x2, . . .) ∈ H :
∑∞

n=1 |nxn|2 <∞
}
. Then A is

hypo-EP but not EP.
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Closed Hypo-EP Operators

Theorem 11.

Let A ∈ C(H). Then each of the following statements implies the

next statement:

1. A is hypo-EP ;

2. A(A†)2A = AA† on D(A) ;

3. AA† ≤ A†A on D(A) ;

4. ‖AA†x‖ ≤ ‖A†Ax‖ for all x ∈ D(A).

Remark 12.

All are equivalent if R(A) ⊆ D(A).
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A perturbation result

Theorem 13.

Let A ∈ C(H) be an EP operator. Let B ∈ B(H) be such that

‖B‖‖A†‖ < 1,BA†A = B|D(A) and AA†B = B. Then A + B is

EP.

Present Work :

Restriction ; Sum ; Product ; Limit ; Perturbation ;

Fuglede-Putnam Type Theorems and so on.
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